

Variable displacement axial piston pumps,

for open circuit.

DISPLACEMENTS

From $29 \text{ cm}^3/\text{rev}$ To $73 \text{ cm}^3/\text{rev}$

MAX. SPEED

3000 min⁻¹

PRESSURE

Max. continuous 280 bar Max. intermittent 315 bar Max. peak 350 bar

APPLICATION

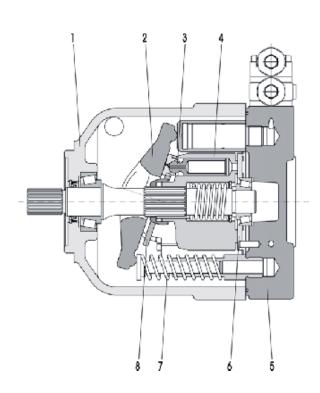
Medium, high pressure

SECTOR

Mobil / Industrial

- Energy savings.
- Low noise emission.
- Operational flexibility.
- Short response time.
- Drive shaft bearing suitable for radial and axial loads.

PLATA pumps meet these requirements in every way. The variable displacement axial piston pump is the optimal solution for open circuit applications. PLATA pumps are available with a wide range of control options. The pump is designed for both radial and axial loads, and supports full torque transmission in multiple body configurations.



GENERAL INFORMATIONS / INSTRUCTIONS

- 1 Pump body
- 2 Swash plate
- 3 Piston
- 4 Cylinders block
- 5 Cover
- 6 Retaining plate
- 7 Counterbalancing spring
- 8 Piston guide plate

INSTALLATION

Check that the maximum coupling eccentricity stays within 0,25 mm to reduce shaft loads due to misalignment. It is advised to use a flexible coupling suitable to absorb eventual water hammer. For applications with axial and radial loads exceeding published standards, consult our sales department. The direction of rotation of the pump must agree with the prime mover rotation. Before installation, the case of the pump must be filled with fluid. Before start-up and during the operation, check that the pump is full of hydraulic oil for at least 3/4 of the volume.

LINES

The lines must have a major diameter which is at least as large as the diameter of pump ports, and must be perfectly sealed. To keep the oil velocity low and increase atmospheric pressure at the pump inlet, the suction lines should be as short as possible. Sources of hydraulic resistance such as elbow, throttiling, gate valves, ect. should also be kept to a minimum. A length of flexible tubing is recommended to reduce the transmission of vibrations. Before connecting the lines, remove any plugs and make sure that the lines are perfectly clean. Check that the drain line is dimensioned in a way to guarantee a case pressure lower than 1,5 bar absolute. The drain line must be connected directly (no filter, no valves, no oil cooler) to the tank and must terminate below the oil level. Check that the dimensions of the suction line guarantees a pressure equal or superior to 0,8 bar. Inlet pressure inferior to 0,8 bar could cause an increase of noise emission, decreasing pum p performance and a reduction of its life expectancy

MOUNTING POSITION

The pump can be mounted in a horizontal or vertical (shaft upwards) position, provided that the location of the drain port assures the required filling of the case. The pump can be located above the oil level if the absolute pressure at the inlet port stays within the stated limits. To reduce noise emission, we recommend that the pump be mounted below the oil level, and avoid suction lines with sharp restrictions.

STARTING UP

Check that all connections are secure and that the entire system is completely clean. Add oil to the tank always using a filter. Bleed the air from the circuit to help the filing. Turn on the system for a few moments at minimum speed, then bleed the circuit again and check the level of oil in the tank. Gradually increase the pressure and speed of rotation up to the pre-set operating levels, which must stay within the stated limits as specified in the catalogue.

TECHNICAL DATA

Technical data (with HL or HLP mineral oil based hydraulic fluid to DIN 51524)

Pump type			LVP 30	LVP 48	LVP 75		
Max. displacement (theor.) V _{max}	[cm³/rev]		29	46	73		
Max. inlet pressure	[bar abs.]	min.		0,8			
Max. Illiet pressure	[bai abs.]	max.		25			
		cont.		280			
Max. outlet pressure	[bar]	int.		315			
		peak		350			
Max. drain line pressure	[bar abs.]			1,5			
Max. speed n _{max}	[min ⁻¹]	$@V_{max}(1)$	3000	2600	2200		
Max. delivery (theor.)	[l/min]	@ n _{max}	87	119,6	160,6		
Max. delivery (tileor.)	[1/11111]	@ 1500 min ⁻¹	43,5	69	109,5		
Max. power (theor.)	[kW]	@ n _{max}	39,8	54,7	73,5		
(∆p= 280 bar)	[KVV]	@ 1500 min ⁻¹	19,9	31,6	50,1		
May targue (theor)	[NIm]	Δp = 280 bar	129,3	205,1	325,5		
Max. torque (theor.)	[Nm]	Δp = 100 bar	46,2	73,2	116,2		
Moment of inertia	[kgm²]		0,0020	0,0030	0,0080		
Max. permissible loading	[N]	F _{ax}	1000	1500	2000		
on drive shaft	[IV]	F_{rad}	1500	1500	3000		
Fill capacity	[1]		0,7	0,9	1,5		
Mass (without oil)	[kg]		18	24	33		
Seals			N=	Buna - V= Vi	ton		
Operating temperature	l°C1	with Buna seals		-25 ÷ +90			
Operating temperature	[°C]	with Viton seals		-10 ÷ +90			

cont. = continuous int. = intermittent

F_{ax} = Axial force F_{rad} = Radial force

(1) = with an inlet pressure of 1 bar abs.

For different working conditions, please consult our sales department.

External load position

Technical data restrictions (with fire resistant fluid)

Hydraulic fluid		Max. pressure [bar]			Max. speed [min ⁻¹]			Operating temperature	Seals	Life
Туре	Fluid composition	cont.	int.	peak	LVP 30	LVP 48	LVP 75	[°C]		bearing
HFC	Water - glycol (35 ÷ 55 % of water)	170	185	200	2100	2000	1700	0 ÷ +90	N - V	75 %
HFD	Phosphate ester	200	220	240	2100	2000	1700	-10 ÷ +50	V	90 %

DIRECTION OF ROTATION

Clockwise or anti-clockwise defined looking at the drive shaft.

Q	[l/min]	Delivery				
M	[Nm]	Torque				
Р	[kW]	Power				
٧	[cm ³ /rev]	Displacement				
n	[min ⁻¹]	Speed				
Δp	[bar]	Pressure				
ην = η	√ (V, _{∆p,} n)	Volumetric efficiency				
η _m = η	m (V,∆p, n)	Mechanical efficiency				
$\eta_t = \eta$	ν • η _m	Overall efficiency				

FLUID VISCOSITY

The fluid viscosity range for optimal use of PLATA pump is between 15 and 35 mm²/s (cSt). Limit functional conditions are: 1500 mm²/s at start up at -25 °C

 $10 \text{mm}^2\text{/s}$ at maximum temperature of 90 °C.

FILTERS

For a maximum pump life, we recommend the use of filtration systems suitable to contain the hydraulic fluid contamination in the class 16/13 conforming to ISO 4406. Satisfactory operation is obtained also with contamination class 19/15 conforming to ISO 4406 or with cleanliness grade 9 conforming to class NAS 1638.

$$\mathbf{Q} = V \cdot \eta_v \cdot \mathbf{n} \cdot 10^{-3}$$
 [I/min]

$$\mathbf{M} = \frac{\Delta p \cdot V}{62,83 \cdot \eta_{m}} \quad [Nm]$$

$$\mathbf{P} = \frac{\Delta p \cdot V \cdot n}{600 \cdot 1000 \cdot \eta_t} \quad [kW]$$

060-010

30 (7.9)

20 (5.3)

10 (2.6)

0

0

D037-D23/0396

OPERATING CURVES / TECHNICAL DATA

Delivery / power (max. displacement)

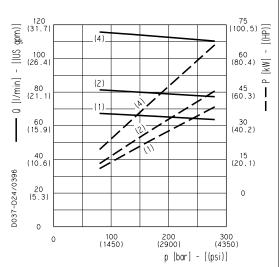
Each curve has been obtained at 50 °C, using oil with viscosity 36 mm²/s at 40 °C and at these speed:

15 (20.1)

10 (13.4)

(6.7) 0

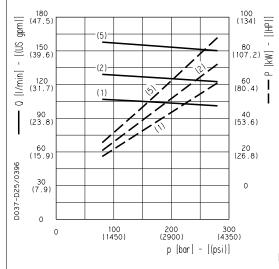
300 (4350)


(1) a 1500 min⁻¹ (3) a 3000 min⁻¹ (5) a 2200 min⁻¹

LVP 30

(2) a 1800 min⁻¹ (4) a 2600 min⁻¹

100 (26 . 4) 50 (67) 45 (60.3) 90 (23.8) - [(US g 80 (21.1) 40 (53.6) [|<u>K</u> 35 (46.9) 0 [I/min] 70 (18.5) 3/ 30 (40.2) 60 (15.9) (2) 50 (13.2) 25 (33.5) 40 (10.6) 20 (26.8)



LVP 75

200 (2900)

p [bar] - [(psi)]

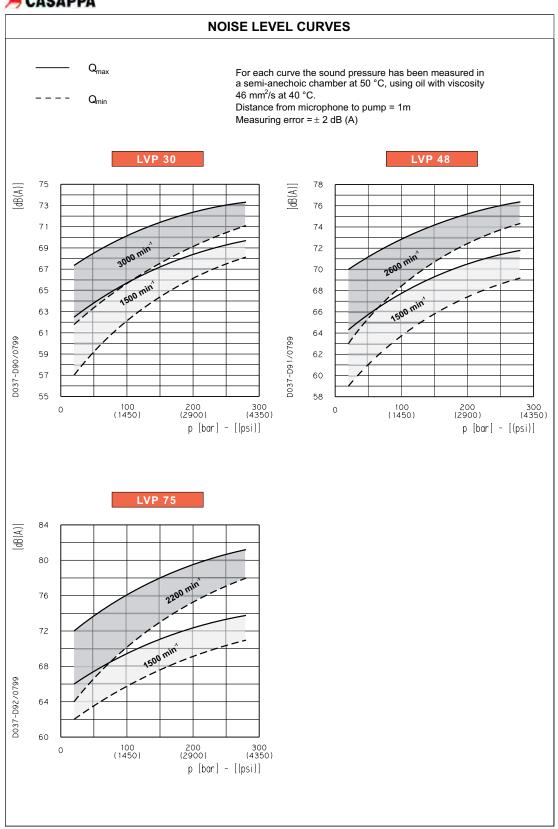
100 (1450)

DETERMINATION OF INLET PRESSURE AND FLOW REDUCTION FOR SPEED INCREASING

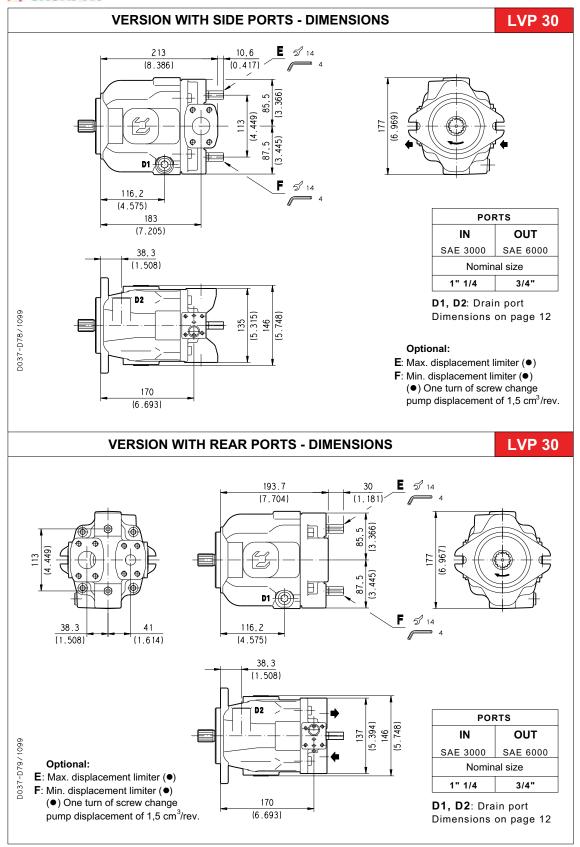
Inlet pressure	Displacement %							
[bar abs.]	65	70	80	90	100			
0,8	120	115	105	97	90	\o		
0,9	120	120	110	103	95	% Bt		
1,0	120	120	115	107	100	asir		
1,2	120	120	120	113	106	ıcre		
1,4	120	120	120	120	112	i D		
1,6	120	120	120	120	117	Speed increasing %		
2,0	120	120	120	120	120	0)		

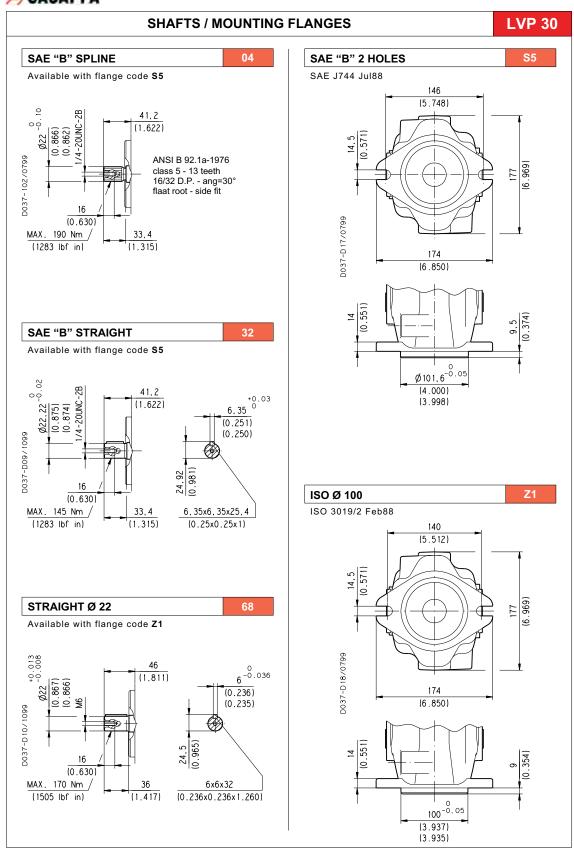
Example 1 Example 2

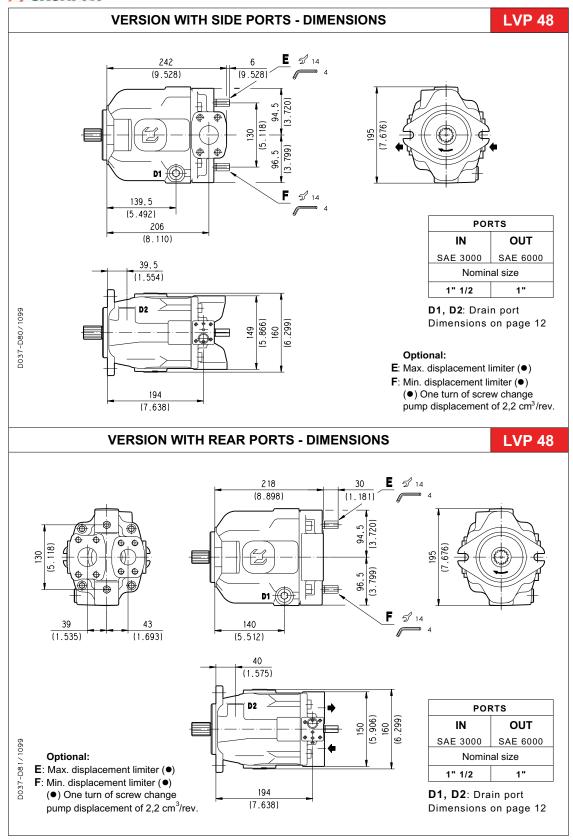
Speed increasing: 120 % Speed increasing: 113 % Inlet pressure: 1,4 bar abs.

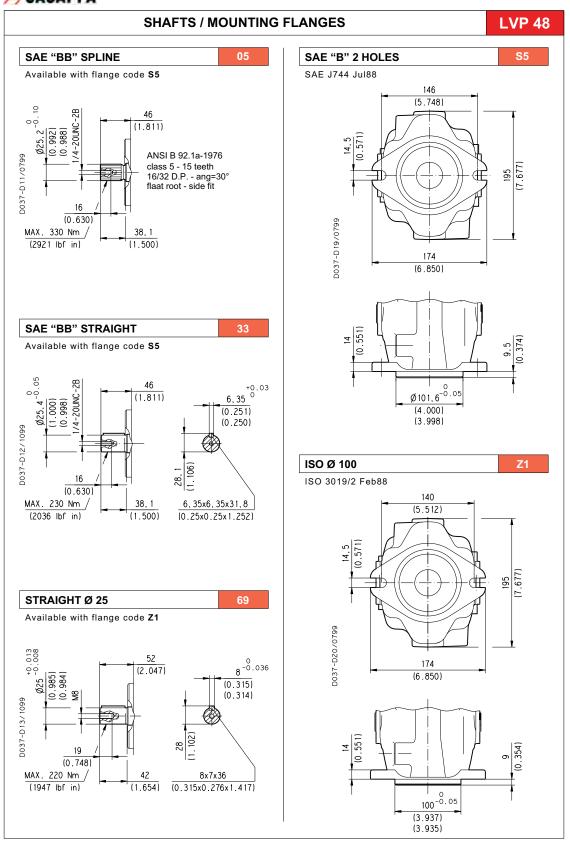

Displacement: 80 % Displacement: 90 %

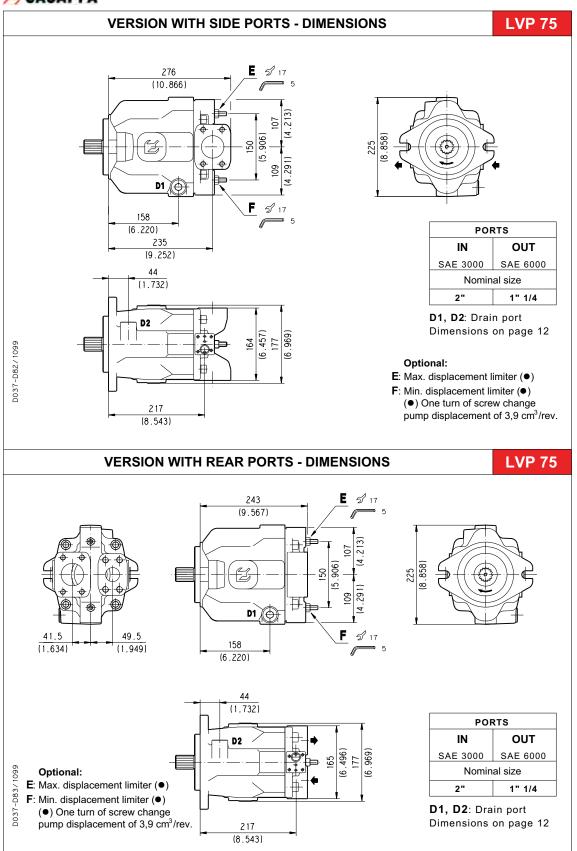
060-010

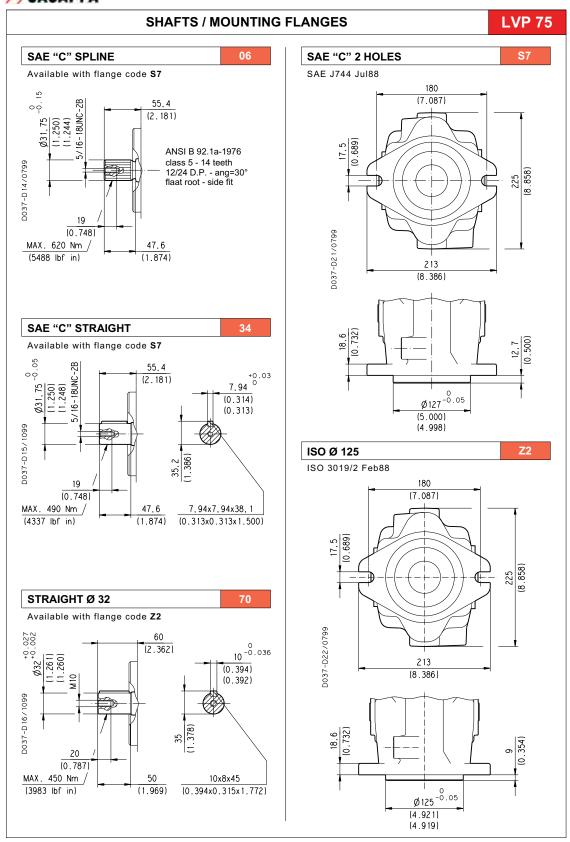


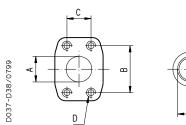


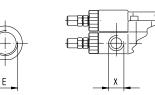












PORT DIMENSIONS

		INLET (SA	DRAIN PORT D1	LOAD SENSING PORT				
	SAE FLANC	GED PORT	S METRIC	THREAD	(SSM)	BRITISH STANDARD BSPP		
	Nominal	Α	В	С	D	E	Х	
CODE	size	mm (in)	mm (in)	mm (in)	Thread Depth mm (in)	Thread	Thread	
MD	1" 1/4	1" 1/4 32 58,7 30,2 (1.260) (2.311) (1.189)		M 10 28 (1.102)	0.4/0			
ME	1" 1/2	38,1 (1.500)	69,9 (2.752)	35,7 (1.406)	M 12 26 (1.024)	G 1/2	G 1/8	
MF	2"	50,8 (2.000)	77,8 (3.063)	42,9 (1.689)	M 12 25 (0.984)	G 3/4		
	SAE FLA	NGED PO	RTS UNC	THREAD (S	SSS)	SAE STRAIGHT THREAD (ODT)		
	Nominal	Α	В	С	D	E	Х	
CODE	size	mm (in)	mm (in)	mm (in)	Thread Depth mm (in)	Thread	Thread	
SD	1" 1/4	32 (1.260)	58,7 (2.311)	30,2 (1.189)	7/16-14 UNC-2B 28 (1.102)	3/4-16 UNF-2B		
SE	1" 1/2	38,1 (1.500)	69,9 (2.752)	35,7 (1.406)	1/2-13 UNC-2B 26 (1.024)	7/8-14 UNF-2B	7/16-20 UNF-2B	
SF	2"	50,8 (2.000)	77,8 (3.063)	42,9 (1.689)	1/2-13 UNC-2B 25 (0.984)	7/0-14 UNF-2B		

		OUTLET (SA	DRAIN PORT D2	LOAD SENSING PORT				
	SAE FLANC	ED PORT	S METRIC	THREAD	(SSM)	BRITISH STA	NDARD BSPP	
	Nominal	Α	В	С	D	E	X	
CODE	size	mm (in)	mm (in)	mm (in)	Thread Depth mm (in)	Thread	Thread	
QB	3/4"	19 (0.748)	50,8 (2.000)	23,8 (0.937)	M 10 24 (0.945)	0.4/0		
QC	1"	25,4 (1.000)	57,2 (2.252)	27,8 (1.094)	M 10 24 (0.945)	G 1/2	G 1/8	
QD	1" 1/4	32 (1.260)	66,7 (2.626)	31,8 (1.252)	M 14 23 (0.906)	G 3/4		
	SAE FLA	NGED PO	RTS UNC	THREAD (SSS)	SAE STRAIGHT THREAD (ODT)		
	Nominal	Α	В	С	D	E	x	
CODE	size	mm (in)	mm (in)	mm (in)	Thread Depth mm (in)	Thread	Thread	
VB	3/4"	19 (0.748)	50,8 (2.000)	23,8 (0.937)	3/8-16 UNC-2B 24 (0.945)	3/4-16 UNF-2B		
VC	1"	25,4 (1.000)	57,2 (2.252)	27,8 (1.094)	7/16-14 UNC-2B 20 (0.787)		7/16-20 UNF-2B	
VD	1" 1/4	32 (1.260)	66,7 (2.626)	31,8 (1.252)	1/2-13 UNC-2B 23 (0.906)	7/8-14 UNF-2B		

HOW TO ORDER SINGLE PUMPS

1	2		3	4		5	6		7		8	9	10
Pump type	Rotation]-[Drive shaft	Mounting flange	_	Ports position	Ports IN/OUT]-[Seals]-	Regulators -	Additional options	Fluid
LVP 30	S		04	S 5	_	L	MD/QB		N	_	RP0 -	- E	

1 Pum	o type (max displacement)	CODE
in ³ /rev	cm³/rev	CODE
1.74	29	LVP 30
2.76	46	LVP 48
4.38	73	LVP 75

2	Rotation	CODE
Anti	-clockwise	S
Cloc	kwise	D

3 Drive shaft	CODE
SAE "B" spline (13 teeth)	04
SAE "B" straight	32
straight Ø 22	68
SAE "BB" spline (15teeth)	05
SAE "BB" straight	33
Straight Ø 25	69
SAE "C" spline (14 teeth)	06
SAE "C" straight	34
Straight Ø 32	70

4	Mounting flange	CODE
SAE	"B" 2 holes	S5
ISO	Ø 100	Z1
SAE	"C" 2 holes	S 7
ISO	Ø 125	Z2

5	Ports position	CODE
Side		L
Pear		P

6	Inlet/outlet p	orts	CODE		
SAE FLA	D (SSM)				
	Nominal size				
Pump type	Inlet IN	Outlet OUT			
	SAE 3000	SAE 6000			
LVP 30	1"1/4	3/4"	MD/QB		
LVP 48	1"1/2	1"	ME/QC		
LVP 75	2"	1"1/4	MF/QD		
SAE FLANGED PORTS UNC THREAD (SSS)					
	Nominal size				
Pump type	Inlet IN	Outlet OUT			
	SAE 3000	SAE 6000			
LVP 30	1"1/4	3/4"	SD/VB		
LVP 48	1"1/2	1"	SE/VC		
LVP 75	2"	1"1/4	SF/VD		

CODE	Seals	
N	Buna (standard)	
V	Viton	

CODE	Regulators 8		
RP0	Pressure compensator setting range 20 - 350 bar (a)		
LS0	Flow compensator (b)		
LS2	Flow compensator for remote control (b)		
LS3	Flow compensator for internal control (b)		
RN0	Torque limiter - standard		
RN1	Torque limiter - internal pilot		
S	Proportional flow servocontrol (c)		
SE	Proportional flow servocontrol with integral electronics (c)		
SER	Proportional flow servocontrol with inte- gral electronics and seq. module RES (c)		

CODE	Additional options (d) 9	
U	Unloading valve (e)	
E	Max. displacement limiter (f)	
F	F Min. displacement limiter (f) G Min. and max. displacement limiter (f)	
G		

CODE	Fluid	10
	Mineral oil (no CODE)	
н	HF fluid (please consult our sales department)	

- Standard setting 280 bar.
- Differential pressure standard setting 14 bar (setting range 10 40 bar). For more informations, please consult our b)
- sales department.
- d) For additional options, please consult our sales department.
- For voltages availability please see page 20. Max. up to 50% of the displacement.

ORDER EXAMPLE

SINGLE PUMPS

Standard pump LVP 30 S-04 S5-L MD/QB-N-LS2

Pump with special features LVP 30 S-04 S5-L MD/QB-N-LS2-E H

ASSEMBLED MULTIPLE PUMPS

Standard double pump LVP 30-04 S5-L MD/QB-RP0-AS5 04 / 30-04 S5-L MD/QB-N-LS2 S

Double pump with special features LVP 75-06 S7-L MF/QD-RP0-E H-AS5 04 / 30-04 S5-L MD/QB-N-LS2 S

Double Plata pump with different series pumps LVP 30-04 S5-L MD/QB-RP0-E-AS1 03 / PLP20.4-03 S1-L EA/EA-N S

INDIVIDUAL SECTIONS

Front section LVP 30 S-04 S5-L MD/QB-N-RP0-AS5 04

Rear section LVP 30 S-04 S5-L MD/QB-N-LS2

